Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.02.08.23285673

ABSTRACT

Understanding the differences in serum cross-neutralizing responses against SARS-CoV-2 variants, including Omicron sub-lineages BA.5, BA.2.75, and BQ.1.1, elicited by exposure to distinct antigens is essential for developing COVID-19 booster vaccines with enhanced cross-protection against antigenically distinct variants. However, fairly comparing the impact of breakthrough infection on serum neutralizing responses to several variants with distinct epidemic timing is challenging because responses after breakthrough infection are affected by the exposure interval between vaccination and infection. We assessed serum cross-neutralizing responses to SARS-CoV-2 variants, including Omicron sub-lineages, in individuals with breakthrough infections before or during the Omicron BA.1 epidemic. To understand the differences in serum cross-neutralizing responses after pre-Omicron or Omicron breakthrough infection, we used Bayesian hierarchical modeling to correct the cross-neutralizing responses for the exposure interval between vaccination and breakthrough infection. The exposure interval required to generate saturated cross-neutralizing potency against each variant differed by variant, with variants more antigenically distant from the ancestral strain requiring a longer interval. Additionally, Omicron breakthrough infection was estimated to have higher impact than booster vaccination and pre-Omicron breakthrough infection on inducing serum neutralizing responses to the ancestral strain and Omicron sub-lineages. However, the breadth of cross-neutralizing responses to Omicron sub-lineages, including BQ.1.1, after Omicron or pre-Omicron breakthrough infection with the ideal exposure interval were estimated to be comparable. Our results highlight the importance of optimizing the interval between vaccine doses for maximizing the breadth of cross-neutralizing activity elicited by booster vaccines with or without Omicron antigen.


Subject(s)
Breakthrough Pain , COVID-19
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.12.29.522275

ABSTRACT

The Omicron variant continuously evolves under the humoral immune pressure obtained by vaccination and SARS-CoV-2 infection and the resultant Omicron subvariants exhibit further immune evasion and antibody escape. Engineered ACE2 decoy composed of high-affinity ACE2 and IgG1 Fc domain is an alternative modality to neutralize SARS-CoV-2 and we previously reported its broad spectrum and therapeutic potential in rodent models. Here, we show that engineered ACE2 decoy retains the neutralization activity against Omicron subvariants including the currently emerging XBB and BQ.1 which completely evade antibodies in clinical use. The culture of SARS-CoV-2 under suboptimal concentration of neutralizing drugs generated SARS-CoV-2 mutants escaping wild-type ACE2 decoy and monoclonal antibodies, whereas no escape mutant emerged against engineered ACE2 decoy. As the efficient drug delivery to respiratory tract infection of SARS-CoV-2, inhalation of aerosolized decoy treated mice infected with SARS-CoV-2 at a 20-fold lower dose than the intravenous administration. Finally, engineered ACE2 decoy exhibited the therapeutic efficacy for COVID-19 in cynomolgus macaques. Collectively, these results indicate that engineered ACE2 decoy is the promising therapeutic strategy to overcome immune-evading SARS-CoV-2 variants and that liquid aerosol inhalation can be considered as a non-invasive approach to enhance efficacy in the treatment of COVID-19.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.30.505966

ABSTRACT

The diversity of SARS-CoV-2 mutations raises the possibility of reinfection of individuals previously infected with earlier variants, and this risk is further increased by the emergence of the B.1.1.529 Omicron variant. In this study, we used an in vivo, hamster infection model to assess the potential for individuals previously infected with SARS-CoV-2 to be reinfected with Omicron variant and we also investigated the pathology associated with such infections. Initially, Syrian hamsters were inoculated with a lineage A, B.1.1.7, B.1.351, B.1.617.2 or a subvariant of Omicron, BA.1 strain and then reinfected with the BA.1 strain 5 weeks later. Subsequently, the impact of reinfection with Omicron subvariants (BA.1 and BA.2) in individuals previously infected with the BA.1 strain was examined. Although viral infection and replication were suppressed in both the upper and lower airways, following reinfection, virus-associated RNA was detected in the airways of most hamsters. Viral replication was more strongly suppressed in the lower respiratory tract than in the upper respiratory tract. Consistent amino acid substitutions were observed in the upper respiratory tract of infected hamsters after primary infection with variant BA.1, whereas diverse mutations appeared in hamsters reinfected with the same variant. Histopathology showed no acute pneumonia or disease enhancement in any of the reinfection groups and, in addition, the expression of inflammatory cytokines and chemokines in the airways of reinfected animals was only mildly elevated. These findings are important for understanding the risk of reinfection with new variants of SARS-CoV-2.


Subject(s)
Pneumonia , Virus Diseases
4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.01.502275

ABSTRACT

Many patients with severe COVID-19 suffer from pneumonia, and thus elucidation of the mechanisms underlying the development of such severe pneumonia is important. The ORF8 protein is a secreted protein of SARS-CoV-2, whose in vivo function is not well understood. Here, we analyzed the function of ORF8 protein by generating ORF8-knockout SARS-CoV-2. We found that the lung inflammation observed in wild-type SARS-CoV-2-infected hamsters was decreased in ORF8-knockout SARS-CoV-2-infected hamsters. Administration of recombinant ORF8 protein to hamsters also induced lymphocyte infiltration into the lungs. Similar pro-inflammatory cytokine production was observed in primary human monocytes treated with recombinant ORF8 protein. Furthermore, we demonstrate that the serum ORF8 protein levels are correlated well with clinical markers of inflammation. These results demonstrated that the ORF8 protein is a viral cytokine of SARS-CoV-2 involved in the in the immune dysregulation observed in COVID-19 patients, and that the ORF8 protein could be a novel therapeutic target in severe COVID-19 patients.


Subject(s)
Pneumonia , Severe Acute Respiratory Syndrome , COVID-19 , Inflammation
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.24.432656

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for the coronavirus disease 2019 pandemic. ORF6 is known to antagonize the interferon signaling by inhibiting the nuclear translocation of STAT1. Here we show that ORF6 acts as a virulence factor through two distinct strategies. First, ORF6 directly interacts with STAT1 in an IFN-independent manner to inhibit its nuclear translocation. Second, ORF6 directly binds to importin 1, which is a nuclear transport factor encoded by KPNA2, leading to a significant suppression of importin 1-mediated nuclear transport. Furthermore, we found that KPNA2 knockout enhances the viral replication, suggesting that importin 1 suppresses the viral propagation. Additionally, the analyses of gene expression data revealed that importin 1 levels decreased significantly in the lungs of older individuals. Taken together, SARS-CoV-2 ORF6 disrupts the nucleocytoplasmic trafficking to accelerate the viral replication, resulting in the disease progression, especially in older individuals.


Subject(s)
Coronavirus Infections , COVID-19
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.25.115600

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a disease that causes fatal disorders including severe pneumonia. To develop a therapeutic drug for COVID-19, a model that can reproduce the viral life cycle and evaluate the drug efficacy of anti-viral drugs is essential. In this study, we established a method to generate human bronchial organoids (hBO) from commercially available cryopreserved human bronchial epithelial cells and examined whether they could be used as a model for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research. Our hBO contain basal, club, ciliated, and goblet cells. Angiotensin-converting enzyme 2 (ACE2), which is a receptor for SARS-CoV-2, and transmembrane serine proteinase 2 (TMPRSS2), which is an essential serine protease for priming spike (S) protein of SARS-CoV-2, were highly expressed. After SARS-CoV-2 infection, not only the intracellular viral genome, but also progeny virus, cytotoxicity, pyknotic cells, and moderate increases of the type I interferon signal could be observed. Treatment with camostat, an inhibitor of TMPRSS2, reduced the viral copy number to 2% of the control group. Furthermore, the gene expression profile in SARS-CoV-2-infected hBO was obtained by performing RNA-seq analysis. In conclusion, we succeeded in generating hBO that can be used for SARS-CoV-2 research and COVID-19 drug discovery. Graphical abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=200 SRC="FIGDIR/small/115600v2_ufig1.gif" ALT="Figure 1"> View larger version (99K): org.highwire.dtl.DTLVardef@13a6908org.highwire.dtl.DTLVardef@1c59300org.highwire.dtl.DTLVardef@362167org.highwire.dtl.DTLVardef@1cb31ed_HPS_FORMAT_FIGEXP M_FIG C_FIG


Subject(s)
Insomnia, Fatal Familial , Pneumonia , Severe Acute Respiratory Syndrome , Drug-Related Side Effects and Adverse Reactions , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL